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ABSTRACT: Convective available potential energy (CAPE) is an important index for storm forecasting. Recent versions
(v15.2 and v16) of the Global Forecast System (GFS) predict lower values of CAPE during summertime in the continental
United States than analysis and observation. We conducted an evaluation of the GFS in simulating summertime CAPE us-
ing an example from the Unified Forecast System Case Study collection to investigate the factors that lead to the low
CAPE bias in GFS. Specifically, we investigated the surface energy budget, soil properties, and near-surface and upper-
level meteorological fields. Results show that the GFS simulates smaller surface latent heat flux and larger surface sensible
heat flux than the observations. This can be attributed to the slightly drier-than-observed soil moisture in the GFS that
comes from an offline global land data assimilation system. The lower simulated CAPE in GFS v16 is related to the
early drop of surface net radiation with excessive boundary layer cloud after midday when compared with GFS v15.2. A
moisture-budget analysis indicates that errors in the large-scale advection of water vapor does not contribute to the dry
bias in the GFS at low levels. Common Community Physics Package single-column model (SCM) experiments suggest that
with realistic initial vertical profiles, SCM simulations generate a larger CAPE than runs with GFS IC. SCM runs with an
active LSM tend to produce smaller CAPE than that with prescribed surface fluxes. Note that the findings are only applica-
ble to this case study. Including more warm-season cases would enhance the generalizability of our findings.

SIGNIFICANCE STATEMENT: Convective available potential energy (CAPE) is one of the key parameters for se-
vere weather analysis. The low bias of CAPE is identified by forecasters as one of the key issues for the NOAA opera-
tional global numerical weather prediction model, Global Forecast System (GFS). Our case study shows that the lower
CAPE in GFS is related to the drier atmosphere than observed within the lowest 1 km. Further investigations suggest
that it is related to the drier atmosphere that already exists in the initial conditions, which are produced by the Global
Data Assimilation System, in which an earlier 6-h GFS forecast is combined with current observations. It is also attrib-
uted to the slightly lower simulated soil moisture than observed. The lower CAPE in GFS v16 when compared with
GFS v15.2 in the case analyzed here is related to excessive boundary layer cloud formation beginning at midday that
leads to a drop of net radiation reaching the surface and thus less latent heat feeding back to the low-level atmosphere.

KEYWORDS: Operational forecasting; Boundary conditions; Model evaluation/performance; Single-column models;
Atmosphere–land interaction; CAPE

1. Introduction

Precipitation is a key ingredient of the tropospheric water
budget and global climate. Clouds directly modulate Earth’s
energy budget and affect atmospheric dynamic flow (Grabowski
and Moncrieff 2004). In numerical weather prediction (NWP)
models, convective available potential energy (CAPE) is an

important index to predict convective precipitation, as well
as guiding how atmospheric buoyancy impacts the strength
of convection in cumulus parameterizations via the parameter-
izations’ closure assumption (Bechtold et al. 2014; Brooks et al.
2007). CAPE is defined as the integrated amount of work
that an upward buoyant force would perform on a given
mass of air if it rose vertically through the entire atmo-
sphere, where the buoyant force is a function of the atmo-
spheric profiles for temperature and moisture. Thus, CAPE
requires realistic simulations of temperature and near-surface
moisture.

Specifically, CAPE is calculated by integrating the buoyant
energy present in the free convective layer (FCL) from the
level of free convection (LFC) to the equilibrium level (EL).
The LFC is the height at which the temperature of an air par-
cel exceeds the temperature of the surrounding air, resulting
in the parcel being unstable relative to its environment. The
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EL, on the other hand, is the height at which the temperature
of the surrounding air exceeds the temperature of the air par-
cel, making it stable relative to its environment. CAPE meas-
ures the cumulative buoyant energy in the FCL from the LFC
to the EL (Blanchard 1998):

CAPE 5 g
�zEL

zLFC

Ty p
2 Ty e

Ty e

⎛
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⎞
⎟⎟⎟⎟⎟⎟⎟⎠ dz, (1)

where g is the gravitational acceleration, with zEL and zLFC
denoting the height of the EL and LFC, respectively. The Ty p

and Ty e
represent the virtual temperature of the ascending air

parcel and surrounding environment, respectively.
It has been established in prior studies that high CAPE

does not guarantee convection (Xie and Zhang 2000), such as
with the presence of strong “convective inhibition” that can
hinder convection initiation. On the other hand, low CAPE
does not necessarily exclude convection, as seen in high-shear
weak-CAPE events (Sherburn and Parker 2014). Nonetheless,
accurate representation of CAPE in NWP models is the prereq-
uisite to effective use of model-forecast CAPE by operational
forecasters. The factors that lead to high CAPE values differ
case by case, but generally, warm temperatures, high availability
of moisture from the surface, and strong surface winds all con-
tribute to the buildup of CAPE (Agard and Emanuel 2017).
One example is dynamic convection, which occurs when the
warm air is lifted above a surface-based cold air mass (Corfidi
et al. 2008). Another example is radiative cooling in the free tro-
posphere, which can increase instability for parcels lifted from
the low levels. A third example is heating of the near-surface air
due to the absorption of solar radiation or large latent heat fluxes
with the presence of moisture, which can also drive an increase
in CAPEmagnitudes (Emanuel 1994).

Summertime convection prediction is often extremely chal-
lenging over the conterminous United States (CONUS) be-
cause of the weak synoptic-scale features. This situation
results in subtle and weak patterns of meso-alpha-scale and
synoptically forced vertical motion (as implied by, for exam-
ple, quasigeostrophic theory) that can be resolved by the GFS
(C768 resolution ; 12-km horizontal grid spacing). Conse-
quently, the impact on the thermodynamic fields needed to
support convection is also subtle and weak. The implication is
that forecasts of convection require a high-quality initial anal-
ysis of the wind, mass and moisture fields as well as a skillful
NWP model. The values of CAPE are influenced by the spe-
cific parcel being lifted (Williams and Renno 1993). There are
multiple methods of determining the lifted parcel, including
lifting a parcel from the surface [i.e., surface-layer-based
CAPE (SBCAPE)] and lifting a parcel representative of the
lowest 100-hPa layer [i.e., mixed-layer based CAPE
(MLCAPE; Rochette et al. 1999)]. The model-predicted field
of CAPE, regardless of flavor (surface based, mixed layer, etc.),
is critical to identifying areas thermodynamically favorable for
convection in the model forecast and is scrutinized by forecast-
ers concerned with severe local storms and heavy rainfall.

Errors in forecasts made by NWP models can be attributed
to several factors. These factors can be broadly categorized
into three areas within the NWP forecasting process: initial

conditions from the analysis, unresolved processes represented
in physics parameterization schemes, and large-scale dynamics
resolved by dynamic core. The initial conditions are generated
through data assimilation (DA). DA integrates information
from both the forecast model and available observations through
an algorithmic framework (Rabier 2005). Thus, disentangling
model errors from the data assimilation algorithms used in gen-
erating initial conditions is a challenging task.

The Unified Forecast System (UFS) (Jacobs 2021) repre-
sents a significant contribution to the NWP community by
not only making NOAA’s operational medium-range NWP
model}that is, Global Forecast System (GFS)}source code
publicly available, but also by providing the entire application
package, allowing users to run the model on non-NOAA plat-
forms. The current operational version of the GFS v16 differs
from the previous version (GFS v15) in terms of physics, num-
ber of vertical levels (127 levels vs 64 levels), and the inclusion
of four-dimensional incremental analysis update in the DA
process (Tallapragada 2020). A prior evaluation of GFS v15
and v16 performance over the eastern United States from
June to September in 2020 shows that GFS v16 simulates a
lower CAPE than v15, which itself already underestimates
CAPE when compared with sounding data (Yang 2020). The
low CAPE in GFS was also identified by forecasters and raised
as one of the key model issues (Sims et al. 2021). Mensch (2021)
validated convection indices derived from GFS against radio-
sonde data from various field campaigns over midlatitude and
tropical regions. Their results demonstrate the consistently
underestimated CAPE in both GFS v15 and GFS v16 for events
where the CAPE is larger than 3000 J kg21. However, a process-
oriented comprehensive evaluation of the GFS and an investiga-
tion of the contributing factors that lead to the bias in CAPE
during summertime high CAPE events has not been made and
is the main motivation for the present study.

In this work, we conducted a case study focusing on CAPE
bias in GFS using the summertime case selected from the
UFS Case Studies Platform (Sun et al. 2021). The UFS Case
Studies platform provides a set of cases that reveal major
forecast challenges in GFS. The case collection covers atmo-
spheric phenomena of winter storms, hurricanes, extreme
temperature, convection, and low-level inversions. This plat-
form serves as a repository for the research community to
gather the necessary resources and instructions to conduct
model runs using different UFS weather applications includ-
ing global forecast applications, such as the GFS. Specifically,
the platform provides initial condition datasets hosted on
cloud storage, model configurations, and setups, and high-
level preliminary simulation results when compared with re-
analysis. In this study, we investigate a 2020 CAPE case,
which occurred over the Great Plains during the daytime of
23 July 2020.

We focus on a comprehensive investigation of the GFS per-
formance in simulating a summertime high CAPE event spe-
cifically looking at advection, boundary layer structure, and
land–atmosphere interactions. Note that we will be focusing
on the CONUS region, despite the fact that the GFS model is
a global model. We attempt to attribute the model biases to
processes and to advance the understanding of the physics
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schemes’ impacts on model behavior by harnessing a hierar-
chical testing framework (HTF). There is no single definition
of HTF. A single-column model (SCM) is a simple system in
model hierarchies (Ek et al. 2019). Another aspect of HTF is
interaction denial, which involves denying interactions be-
tween different atmospheric processes. SCM applies interac-
tion denial with removed physics and dynamic interactions
that helps untangle impacts of model physics. In this work, we
seek to address the following questions: 1) How well can the
GFS predict the meteorological environment during a large-
CAPE event in the summertime? 2) What are the factors that
hinder the GFS from simulating the magnitudes of CAPE? It
should be noted that the convection formation mechanism
and statistical relationship between CAPE value and severe
weather are beyond the scope of this study.

The paper is organized as follows: section 2 details the
model configurations for GFS and SCM simulations and pro-
vides an overview of the observational dataset used in this
study. The results, including synoptic patterns, vertical struc-
tures, and energy budget, are analyzed in section 3. Section 4
presents the results of SCM sensitivity experiments. A sum-
mary and a future outlook are provided in section 5.

2. Model simulations and observational datasets

a. Model configuration

1) GLOBAL FORECAST SYSTEM

The Common Community Physics Package (CCPP) (Heinzeller
et al. 2023) provides a framework and physics modules to the
UFS applications. As of CCPP v5.0, four physics suites are
supported. In this study, simulations were conducted using
two physics suites: GFS v15.2 and GFS v16. The reason we
examined the current operational GFS model (v16) together
with an older version (v15.2) is to attempt to identify the cul-
prits that lead to the exacerbated CAPE low bias in GFS by
comparing the simulation fields from the two model versions.
We leveraged the CCPP capability to output tendencies
generated from the dynamical core and individual physics pa-
rameterizations to advance the understanding of model un-
certainties. It is pertinent to note that the present study solely
investigates the impact of modifications in the physics param-
eterizations between the two versions of the GFS. Other
changes that were made in the operational version, such as
vertical resolution and data assimilation, have not been taken
into account.

The GFS v16 physics suite inherits most of the physics
schemes from GFS v15.2. The radiative transfer is based on
the Rapid Radiative Transfer Model for Global Climate Mod-
els (RRTMG) shortwave and longwave radiation schemes
(Iacono et al. 2000). The GFS surface layer scheme (Long
1984) and Noah land surface model are used to simulate the
land–atmosphere exchange (Mitchell 2005). The Geophysical
Fluid Dynamics Laboratory cloud microphysics scheme ap-
plies a bulk water technique to predict five hydrometeor spe-
cies (Lin et al. 1983). Scale-awareness is implemented by the
assumption that subgrid variability is a function of grid spac-
ing. For shallow convection, the two physics suites adopt the

GFS Scale-Aware Mass-Flux (sa-MF) shallow convection
scheme (Han et al. 2017). For deep convection, the GFS
Scale-Aware Simplified Arakawa–Schubert (sa-SAS) deep
convection scheme is employed (Han et al. 2017).

The main difference between the two physics suites lies in
the PBL parameterizations. The hybrid Eddy-Diffusivity
Mass Flux (EDMF) PBL and free atmosphere turbulence
scheme in GFS v15.2 is a first-order turbulent transport
scheme that accounts for subgrid scale vertical turbulent mix-
ing within the individual grid columns (Han et al. 2016). The
hybrid approach uses the mass flux scheme in the boundary
layer under strongly unstable (convective) atmospheric condi-
tions and switches to an eddy-diffusivity countergradient scheme
under slightly unstable conditions, based on a threshold of Obu-
khov length. The mass flux accounts for nonlocal subgrid trans-
port related to strong updrafts. Eddy diffusivity is based on PBL
height (PBLH) and Monin–Obukhov similarity parameters. The
GFS v16 scale-aware turbulent kinetic energy (TKE)-based
moist EDMF PBL scheme is an extended version of the hybrid
EDMF scheme (Han and Bretherton 2019). One major en-
hancement is that the eddy diffusivity is determined by the pre-
dicted TKE. The EDMF scheme is universally applied to the
boundary layer in unstable conditions. The PBL scheme in
GFS v16 also adds a scale-aware capability and includes a
moist-adiabatic process to simulate the formation of stratocu-
mulus when the updraft reaches the saturation point. The tur-
bulent mixing induced at the top of the stratocumulus is
represented by a mass-flux parameterization.

The global workflow (Friedman and Kolczynski 2022) de-
veloped by the NOAA Environmental Modeling Center
(EMC) is the superstructure used to run the UFS weather
model applications. The UFS Case Study platform provides
detailed instructions on how to set up the global workflow
and contains links to initial condition datasets for the 2020
July CAPE case. Specifically, the model runs were initialized
at 0000 UTC 23 July 2020, with a 48-h forecast at an opera-
tional horizontal grid resolution of C768 (approximately 13 km)
and 127 vertical levels. Note that the operational GFS v16 uti-
lizes 127 levels, whereas GFS v15.2 employs 64 levels. To elimi-
nate any impacts of changing vertical resolutions, we have used
127 levels for both experiments in our study. For visualization,
the vertical level distribution below 750 hPa and the layer thick-
ness at different pressure levels are illustrated in Fig. 1. The
lowest model level is around 20 m above ground level, and
there are 22 levels within the lowest 100 hPa.

2) CCPP SCM

In our attempt to understand and attribute the model er-
rors, we used the CCPP SCM (Firl et al. 2022) and conducted
several sensitivity runs. A SCM essentially simulates a single
column using the physics package from the parent model. In
our case we use CCPP physics suites with the SCM version of
the UFS weather model. The CCPP SCM is a simplified ver-
sion of the global circulation model, yet it includes the physics
parameterizations that make it an ideal tool to test physics de-
velopment in a much less computationally demanding setting
than running the full global model, permitting more rapid
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discovery of coding errors and preliminary assessment of pro-
posed physics improvement. The necessary input data to drive
the CCPP SCM include initial vertical profiles, surface turbu-
lent fluxes or necessary soil parameters to run a land surface
model (LSM), and large-scale forcing. The advection fields
are specified by a forcing dataset (Zhang et al. 2016), which
can be obtained from observations or three-dimensional nu-
merical weather models, such as GFS. The CCPP SCM pro-
vides a Python script to extract the necessary forcings from
GFS global runs.

We used the suite of SCM_GFSv16 to mimic the physics of
operational version of GFS v16. We employed a configuration
of the SCM that allows use of specified surface fluxes (option
spec_sfc_flux; Firl et al. 2022). The specified surface fluxes
come from observations or UFS simulations as discussed in
section 4. We also conducted a SCM run with active Noah
LSM. The advective tendencies are estimated from UFS state
variables in the initial condition and forcing generating tool
provided in CCPP SCM.

b. Verification data

1) OBSERVATIONAL DATA

The Atmospheric Radiation Measurement (ARM) South-
ern Great Plains (SGP) (Sisterson et al. 2016) observational
network provides comprehensive measurement of components
of the surface-energy budget, soil properties, and vertical
profiles of meteorological variables. There are nine surface-
energy-budget measurement sites over the SGP, with surface-
energy fluxes, near-surface meteorology, and soil temperature
and moisture at half-hourly frequency (Holdridge and
Kyrouac 1993).

Radiosondes provide measurements of temperature, mois-
ture, and wind speed with high vertical resolution, and are

typically launched every 6 h at the SGP site. Higher temporal
resolution (5 min) profiles of temperature and humidity in the
boundary layer can be retrieved from the atmospheric emitted
radiance interferometer (AERI) (Knuteson et al. 2004) using
the tropospheric optimal estimation retrieval (TROPoe) algo-
rithm (Turner and Löhnert 2014; Turner and Blumberg 2019).
TROPoe-retrieved profiles have a maximum root-mean-square
error of 1 K and 0.8 g kg21 for temperature and moisture, re-
spectively, within the lowest 2 km, when verified against radio-
sondes (Turner and Löhnert 2014). The TROPoe dataset has
been widely used in research efforts that involve boundary
layer structures (Bonin et al. 2015; Wagner et al. 2019) and
data assimilation studies (e.g., (Chipilski et al. 2022; Degelia
et al. 2020).

2) MODEL ANALYSIS AND REANALYSIS DATA

Here we adopt HRRR analyses (at forecast hour 0), to-
gether with radiosonde data, as the benchmark verification
dataset for evaluating the spatial distribution of CAPE. The
High-Resolution Rapid Refresh (HRRR) model is an hourly
updated and convection-permitting model running at 3-km
resolution over the CONUS (Dowell et al. 2022). HRRR is
developed and maintained at NOAA’s Global Systems Labo-
ratory. The advanced data assimilation, rapid cycling, and
high resolution are primary reasons why the HRRR is consid-
ered quite skillful (Fovell and Gallagher 2020). Comprehen-
sive model verification tools (Turner et al. 2020) were used to
demonstrate the accuracy of HRRR forecasts for a wide
range of variables, including radiosondes, aircraft, surface me-
teorology, radar reflectivity, precipitation, and ceiling height
(James et al. 2022). Prior studies have documented HRRR be-
ing skillful in various atmospheric processes or weather phe-
nomena, including but not limited to PBL vertical structures

FIG. 1. Vertical levels of GFS below 750 hPa and layer thicknesses at different pressure levels.
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(Fovell and Gallagher 2020), mesoscale convective systems
(Pinto et al. 2015), and atmospheric rivers (English et al.
2021).

In terms of large-scale advection fields, we choose the fifth
major global reanalysis produced by the European Centre for
Medium-Range Weather Forecasts (ERA5) to validate the
moisture budget (details are in section 3d). ERA5 is based on
the operational Integrated Forecast System (IFS) Cy41r2
(Hersbach et al. 2020) model of the ECMWF. The ERA5 da-
taset provides hourly data at 31-km spatial resolution and 137
vertical levels. As a reanalysis dataset, which combines obser-
vations and model ERA5 provides optimal estimates of global
gridded atmospheric states. ERA5 generally performs well in
comparisons with other reanalysis datasets (Guo et al. 2021;
Mayer et al. 2019; Tarek et al. 2020; Trolliet et al. 2018) and
several studies have used ERA5 to investigate the moisture
budget (Mayer et al. 2021; Naakka et al. 2021; Ren et al. 2021).

3) LARGE-SCALE MOISTURE TENDENCY

To investigate whether the simulated large-scale dynamics
contribute to the moisture tendency discrepancies, we com-
pare the moisture budget derived from the GFS simulations
with ERA5. The moisture budget is calculated as (Bellenger
et al. 2015; Yanai et al. 1973)

q
t

52v ? =q 2 v
q
p

2
Q2

L
, (2)

where q/t is the large-scale water-vapor mixing ratio ten-
dency; 2v ? =q represents the horizontal advection of mois-
ture and v denotes the horizontal vector winds; 2v(q/p)
describes the vertical advection of moisture and v stands for
the vertical velocity (Pa s21); 2(Q2/L) is calculated as the re-
sidual term, in which Q2 is called the apparent moisture sink
and L represents the latent heat of condensation: 2(Q2/L)
represents condensation minus evaporation and transport by
unresolved subgrid scale features. The budget items were cal-
culated over a 120 km 3 120 km region to characterize the
large-scale dynamics.

3. Results

a. Case overview

The synoptic pattern and CAPE are examined at forecast
hour 18 initialized at 0000 UTC 23 July 2020. The surface
weather map for 1800 UTC 23 July 2020 (Fig. 2a) shows a
cool air mass over the Great Lakes region, separated from
a warm, humid air mass to the south and southwest by a
quasi-stationary front. A large CAPE reservoir (Fig. 3a) was

FIG. 2. (a) Weather Prediction Center surface analysis valid at 1800 UTC 23 Jul 2020, and (b) Terra MODIS true-color corrected reflectance
on 23 Jul 2020. The approximate time whenMODIS scans the CONUS is at 1900 UTC. The SGP central facility site C1 is marked by a red X.

FIG. 3. (a) HRRR-analyzed MLCAPE (mixed layer taken as the lowest 90 hPa of the forecast atmosphere) (shading; J kg21), and GFS
(b) v15.2 and (c) v16 18-h forecast MLCAPE valid at 1800 UTC 23 Jul (shaded; J kg21). The location of the SGP central facility is indi-
cated by an X, and the locations of the ARM surface energy balance sites at the SGP are marked with tiny blue dots.
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present over the Great Plains south of the front, north of
308N and west of 958W with a mean mixed-layer based CAPE
(MLCAPE) value of 2090 J kg21 using the routine sounding
data from the University of Wyoming (http://weather.uwyo.
edu/upperair/sounding.html). The spatial distributions of
CAPE from GFS forecasts and HRRR analysis show that
the GFS forecasts (Figs. 3b,c) captures the potential of orga-
nized convection along the boundary of the warm front over
the Northern Great Plains, as well as the propagating shal-
low convection over the SGP. However, when compared
with HRRR analysis, the MLCAPE derived from GFS fore-
cast data at 1800 UTC exhibits a negative bias with a mean
error (ME) of 21165 and 21170 J kg21 for GFS v15.2 and
GFS v16, respectively, over the Great Plains. Here, HRRR
analysis was bilinearly interpolated to GFS grids at 1800 UTC
for the region encompassing the large-CAPE reservoir over
the Great Plains area, using the coordinates of the lower-left
corner (31.248N, 102.648W) and the top-right corner (49.168N,
96.478W).

Although initiation of the deep convection that is evident
in Fig. 2b in the vicinity of the front is of interest, we concen-
trate here on conditions farther south at the SGP site in
north-central Oklahoma (approximate location indicated in
Fig. 2). For this we make use of the detailed boundary layer
observations at the ARM SGP site in our evaluation of GFS
boundary layer forecasts for that location. Sounding and
moisture budget analysis over the Northern Great Plains are
included in sections S1 and S2 in the online supplemental
material.

The SGP site is amid a field of small fair-weather cumulus
clouds produced by diurnal heating of the surface on 23 July

2020 (Fig. 2b). Although there are evident spatial variations
in this cloud field, there is no indication of active deep convec-
tion in the near vicinity. The meteorology of the SGP appears
to be dominated by processes operating in the fair-weather
boundary layer and not by MCSs or mobile synoptic-scale dis-
turbances, making this case suitable for analyzing the GFS
boundary layer performance.

The time series of CAPE bias for GFS was investigated us-
ing the TROPoe dataset with high temporal resolution. The
TROPoe dataset enables verification of CAPE and of the di-
urnal cycle of boundary layer structures at finer time scales, in
comparison with soundings (Blumberg et al. 2017). SBCAPE
measures the instability using air parcels originating from the
surface, thus errors in simulated SBCAPE imply error in fore-
casting meteorological fields near the surface if the forecast
values above are correct. Time series of SBCAPE (dashed
line) and MLCAPE (solid line) derived from the TROPoe da-
taset and the two model runs using the two different physics
suites at SGP central facility (C1) site are shown in Fig. 4. The
daytime means of SBCAPE and MLCAPE derived from ob-
servations at the SGP C1 site reached 3734 and 1904 J kg21,
respectively. The CAPE values exhibit a sharp rate of in-
crease at around 0800 LST and reached their maximum at
around noon. The two GFS runs overall captured the diurnal
pattern; however, GFS v15.2 underestimates SBCAPE and
MLCAPE with a daytime ME of22773 and21247 J kg21, re-
spectively. GFS v16 generated SBCAPE and MLCAPE about
16% and 26% lower than GFS v15.2. A notable discrepancy
was observed between the difference in SBCAPE and
MLCAPE from the observations versus the simulations. This
is because the soundings show a notable superadiabatic

FIG. 4. Time series of SBCAPE (J kg21; dashed lines) and MLCAPE (J kg21; solid lines) derived from TROPoe
(black), GFS v16 (orange), and GFS v15.2 (blue) at the SGP C1 site. The SBCAPE and MLCAPE values derived
from radiosondes are given by open and filled red circles, respectively.

WEATHER AND FORECAS T ING VOLUME 398

Brought to you by NOAA Library | Unauthenticated | Downloaded 05/23/24 03:48 PM UTC

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html


surface layer that is less evident (indicating more vertical
mixing) in GFS than in the observations. The well-mixed
boundary layer in GFS, as illustrated in Fig. 6, could be a con-
tributing factor to the fewer differences between SBCAPE
and MLCAPE in the simulations when compared with the
observations.

b. Surface meteorology, surface fluxes, and soil properties

Following the synoptic pattern and CAPE analysis in the
previous section, this section aims at describing the surface
conditions at sites situated within the large CAPE region. Al-
though vertical meteorological profiles (rawinsondes) are
available at only one site (SGP C1), the ARM network at
SGP surrounding C1 has 9 sites with surface measurements.
We make use of surface data from all these sites. Near-surface
moisture and temperature directly impact convection forma-
tion, especially the magnitude of SBCAPE. The partitioning
of surface net radiation to surface turbulent fluxes redistrib-
utes heat and moisture into the lower boundary layer. The
ARM network at SGP allows for verification of surface mete-
orological fields and surface energy budgets at several sites,
enabling us to narrow down sources of error.

Figure 5 shows the observed and simulated time evolution
of near-surface meteorological fields, surface energy fluxes,
and soil properties. The mean daytime (0800–1800 LST) 2-m
temperature (T_2m) and 2-m dewpoint temperature (Td_2m)
averaged over the SGP sites were 303.60 and 296.56 K, re-
spectively. The GFS was warm and dry with an ME of 10.44
and23.10 K for daytime T_2m and Td_2m, respectively. GFS
v16 exhibits slightly larger biases of the T_2m than GFS v15.2.
Diurnal variations of 10-m wind speeds are relatively well rep-
resented in GFS until 1900 LST. Later, the observed winds
decreased while the strong winds lasted longer in both GFS
suites.

The mean daytime net radiation (Rn) in GFS v16 was lower
than observed and in GFS v15.2 due to its sharp decrease af-
ter noon. The earlier decrease of Rn in GFS v16 (Fig. 5c) is
related to liquid cloud formation due to boundary layer pro-
cesses. These clouds are based just above the top of the
boundary layer in GFS v16. Analogous cloud formation oc-
curs in GFS v15.2 (Fig. S4 in the online supplemental
material) but with less cloud water mixing ratio and thus a
smaller liquid water path than GFS v16 (Figs. S5 and S6 in the
online supplemental material).

Partitioning of the net incoming radiation flux, Rn, into tur-
bulent surface heat flux depend on soil properties and vegeta-
tion. Magnitudes of surface latent (LHF) and sensible heat
flux (SHF) drop early in GFS v16 similar to Rn. The daytime
SHF and LHF at the SGP sites are shown with large biases of
20.1% and 219.8% in GFS, respectively (Fig. 5f). The day-
time Bowen ratio derived from measurement was 0.42. This
contrasts sharply with the Bowen ratio of 0.67 and 0.60 for
v15.2 and v16, respectively. This indicates that biases in sur-
face turbulent fluxes for this case not only stem from net radi-
ation, but also from soil moisture (bias: 20.01; Fig. 3g) and
soil temperature (bias:10.73 K; Fig. 3h).

For this case, the GFS analysis generated from GFS v16
was utilized to drive the UFS model. In GFS v16, an offline
Global Land Data Assimilation System is run for 72 h forced
by the NWS Climate Prediction Center observed precipita-
tion product and other forcings from model’s own Global
Data Assimilation System forecast. Soil moisture and soil
temperature at snow free land points from the first guess in-
cluded in the land initial conditions are replaced with the
spinup values (F. Yang 2022, personal communication). How-
ever, the current study does not investigate the source of bias
in soil moisture and temperature, as it is beyond the scope of
this research.

c. Boundary layer structure

CAPE is directly impacted by the boundary layer structure.
Biases of simulated CAPE imply discrepancies of tempera-
ture and humidity between models and observations. The
temporal evolution of the vertical distribution of temperature
and moisture at SGP C1 is present in Fig. 6. It reveals that
GFS simulated a warmer and drier atmosphere in the low at-
mospheric layers when compared with the TROPoe dataset.
Specifically, the average potential temperature within the low-
est 1 km in GFS (305.7 K) exhibits a positive bias of 1 K when
compared with the observation (304.7 K). Climatology analy-
sis of CAPE from multidecade ERA-40 data shows a stronger
relationship with near-surface humidity than near-surface
temperature (Riemann-Campe et al. 2009). The mean ob-
served water vapor mixing ratio q within 1 km AGL during
the daytime was 17.4 g kg21, whereas simulated q exhibited a
dry bias with a mean value of 15.4 and 14.8 g kg21 in GFS
v15.2 and v16, respectively.

The PBLH determined using the theta-based parcel method
(Hennemuth and Lammert 2006) is illustrated in Fig. 6. The
PBLH derived from the TROPoe dataset began to grow at
0700 LST and reached a plateau at 1500 LST before it col-
lapsed at 1800 LST. GFS v15.2 PBL grows rapidly until around
1000 LST, then grows more slowly until about 1600 LST after
which the PBLH decreases rapidly. In GFS v16, the simulated
PBL exhibits a rather steep growth until around 1400 LST and
weakens immediately after that. The maximum observed PBL
depth during daytime reached 1.48 km, with a slightly higher
PBL height observed on July 24 than the prior day. GFS gen-
erates a deeper mixed layer with a peak PBLH of 1.77 and
1.89 km in v15.2 and v16, respectively. The stronger PBL mixing
in GFS at noon reduces water-vapor loadings at low altitudes.
This correlates with our earlier findings that the magnitudes of
SHF in GFS v16 were larger and dropped earlier in the after-
noon, when compared with both GFS v15.2 and observations.
The larger-than-observed SHF could partly explain the higher
PBLH in GFS v16. One possible explanation for the slightly
larger surface latent heat flux in GFS v16 than v15.2 before af-
ternoon is the potential for enhanced drying within the PBL
scheme, which could result in increased evaporation and subse-
quently higher surface latent heat flux.

To investigate how the individual physical processes impact
the boundary layer meteorological profiles, we inspected the
tendencies generated from the different physics schemes. The
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temperature tendencies and moisture tendencies generated
by the PBL schemes in GFS v15.2 and GFS v16 are presented
in Fig. 7. Results show that the PBL parameterization is the
main driver for temperature and moisture changes (figure not
shown) in the lowest 150 hPa at the SGP site. The PBL
scheme warms and dries the atmosphere within the boundary
layer. The buoyant elements rise within the mixed layer and
continue rising and become negatively buoyant upon encoun-
tering the top of the mixed layer. The air above the mixed
layer is both drier and virtually warmer than the mixed-layer
air. The turbulent mixing process entrains this drier air with
higher virtual potential temperature into the mixed layer,
thus the mixed layer becomes virtually warmer and drier.
Near the top of the PBL, the detrainment process cools and
moistens the free atmosphere, leading to the thin layer of
cooling and moistening above the mixed layer. The higher
PBLH in GFS v16 is associated with more mixing at the low
levels with more drying than in GFS v15.2, thus leading to a
drier atmosphere.

d. Advection

To investigate how the simulated large-scale advection
fields in GFS impact the moisture bias, we computed the
moisture budget based on Eq. (2) using ERA5 and GFS fore-
casts within a 120 km 3 120 km region centered at the SGP
C1 site. The reason we use ERA5 as a benchmark is to cap-
ture large-scale dynamics without introducing small-scale het-
erogeneities from high resolution datasets, such as HRRR
analysis. The regional average and standard deviation of
terms in the moisture budget from ERA5 and GFS v16 during
1400–2200 UTC 23 July 2020 are presented in Fig. 8. Results
from GFS v15.2 are not shown due to their similarity to GFS
v16.

The regional mean moisture tendencies both exhibit drying
tendencies (negative values) within the lowest 90 hPa with
very similar values in GFS v16 and ERA5, with GFS v16 sim-
ulating a slightly lower magnitude. The residual term is the
main contributor to the moisture budget within the lowest
100 hPa, exceeding the impact of advection for this case. This
means the low CAPE bias in GFS does not stem from large-
scale advection fields in this case. Moisture tendencies are
positive above 900 hPa for both the ERA5 and GFS v16, and
reduce to nearly zero at around 400 hPa. The drying impact
of horizontal advection in GFS v16 is more significant than in
ERA5 above 900 hPa. Meanwhile, the moistening from the
residual term opposes the drying from horizontal advection.
GFS v16 shows a strong peak value of mean moisture ten-
dency at around 750 hPa, which can be attributed mainly to
the horizontal advection and residual term. This large residual
term could be related to moist physics, such as cloud presence
and transport of moisture due to unresolved turbulence. Al-
though the residual terms are both positive between 900 and
400 hPa in the two scenarios, the peak moisture tendency is
not present in ERA5. GFS v16 exhibits less drying from verti-
cal advection above 900 hPa with a weaker subsidence, when
compared with ERA5. The standard deviations of the mois-
ture-budget terms have similar magnitudes as the regionalF
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mean at each level, implying no significant outliers within the
domain of interest. Differences in moisture tendency between
ERA5 and GFS would have a greater impact on MLCAPE as
compared with SBCAPE, because the former is a more inte-
grated measure that accumulates differences over a larger
depth. SBCAPE will be affected by the surface value of mix-
ing ratio, and the virtual temperature stratification above the
surface. Only through the virtual temperature dependence on
water vapor content will the SBCAPE be changed by tenden-
cies above the surface.

4. SCM experiments

In global models, interactions and feedback between the
multiscale atmospheric processes and compensating errors
complicate the analysis of the results. In SCMs, it is conve-
nient to change one model component at a time to pinpoint
factors that impact the simulated phenomena. Initial condi-
tion vertical profiles at 0000 UTC 23 July in Fig. 9a suggest
that both GFS and the observations have a dry-adiabatic
mixed layer, but the GFS shows a deeper, slightly warmer and
drier mixed layer. To advance our understanding of how the
initial conditions impact the simulated CAPE, we drive the

CCPP SCM with realistic initial conditions using vertical
profiles from sounding sites at ARM and initial conditions
from GFS IC for a simulation length of 24 h, both with pre-
scribed surface fluxes, using GFS v16 physics suites, re-
ferred to as ObsIC and UFSIC, respectively. We also
perform another SCM experiment with active Noah LSM,
referred to as ObsIC_LSM, to investigate how the PBL in-
teractions with the LSM impact the simulated CAPE. The
advection fields for the three SCM runs are both from
the GFS v16 global runs, which show similar values in the
boundary layer when compared with ERA5 (Fig. 8). Note
that since the SCM outputs are sensitive to the advection
fields, our focus should be placed on the intercomparisons
among the three SCM runs.

Note that the GFS simulated surface heat flux bias at C1
site (figure not shown) is smaller than the ensemble data de-
picted in Fig. 5. We conducted a SCM run (UFSIC_ObsFlx)
using GFS IC but with observed surface fluxes to examine the
influence of surface flux bias on derived CAPE. It is worth
noting that the GFS simulated surface heat flux bias at C1 site
(figure not shown) is smaller than the ensemble data depicted
in Fig. 5. The early reduction of GFS simulated surface fluxes
in the early afternoon is evident at C1 site, which results in a

FIG. 7. Time–height distribution of (a),(b) temperature tendency (K h21) and (c),(d) moisture tendency (g kg21 h21)
from PBL schemes in GFS (left) v15.2 and (right) v16. The PBLH from Figs. 6b and 6c, respectively, are superimposed
on the tendency plots by the thick black lines.
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smaller CAPE in UFSIC relative to UFSIC_ObsFlx during
early afternoon (Fig. S4 in the online supplemental material).

The vertical profiles of temperature and dewpoint from
SCM runs (ObsIC, ObsIC_LSM, and UFSIC) at 1500 UTC
(0800 LST) 23 July are shown in Fig. 9b. We added the
observed sounding profile from TROPoe for reference. At
0800 LST, the surface warms quickly, exhibiting a decoupled
state from the upper levels. The SCM runs capture the
surface warming with adiabatic temperature profiles. UFSIC
simulations exhibit drier atmosphere than ObsIC simulations

in the lowest 100 hPa, which can be attributed to the unre-
alistic initial conditions shown in Fig. 9a. Air temperature
in the ObsIC_LSM are colder than ObsIC in the lowest
100 hPa.

The MLCAPE derived from the four SCM runs, as well as
TROPoe are shown in Fig. 10. Although the derived CAPE is
not exactly the same between the SCM and the global UFS
runs, the low bias of CAPE seen in the global runs is also pre-
sent in the SCM runs when using the UFS forcing. Note that
focus should be placed on the intercomparison among the

FIG. 8. Regional mean large-scale moisture budget (g kg21 day21) associated with vertical advection (purple),
horizontal advection (orange), residual term (green), and the local moisture change (black) from (a) ERA5 and
(b) GFS v16 simulations over a 120 km 3 120 km region centered at the SGP C1 site during 1400–2200 UTC
23 Jul 2020. Shaded areas represent 61 standard deviation. The tendencies are averaged over the daytime first,
and standard deviations are then calculated spatially for all grid cells within the 120 km 3 120 km domain cen-
tered at the SGP C1 site.

FIG. 9. (a) Initial vertical profiles of temperature (solid lines) and dewpoint (dashed lines) at the SGP central
facility (C1) site from observation (black) and GFS (orange) at 0000 UTC 23 Jul. (b) Skew T–logp plots of
measured soundings (Obs; black) and SCM runs from ObsIC (orange), ObsIC_LSM (blue), and UFSIC (red) at
1500 UTC 23 Jul.
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SCM runs, since the advective tendencies used to drive CCPP
SCM are estimated from UFS state variables, which can
surely be different from the real world. With realistic initial
conditions (ObsIC), the resulting MLCAPE increases by
around 1000 J kg21 when compared with UFSIC. However,
it is important to acknowledge that it can be challenging to
distinguish between model background errors and DA algo-
rithms in the process of generating initial conditions.

The SCM run with active Noah LSM, ObsIC_LSM simu-
lates smaller CAPE than the SCM run with prescribed surface
fluxes (ObsIC). One hypothesis is that the GFS v16 PBL
scheme tends to overmix, leading to excessive drying of the
atmosphere near the surface. This, in turn, causes excessive la-
tent heat flux, drying the soil during the forecast. This over-
mixing and drying bias is not large, so it does not show up
early in the forecast. However, it is systematic and accumu-
lates during the forecast unless there is enough synoptic activ-
ity (specifically, quasigeostrophic forcing) forecast by the
model to produce model precipitation, and so overcome the
excessive drying of the soil by the excessive latent heat flux.
In summer, with weak synoptic systems, is when this particu-
lar bias late in the forecast tends to show up. These results
highlight the utility of SCM for model error attribution within
the HTF.

5. Summary

Prediction of CAPE requires realistic simulations of verti-
cal temperature and moisture profiles, especially at the near-
surface levels. In this study, we aimed to identify the factors
contributing to one of the GFS main forecast challenges,

underpredicted CAPE. To this end, we investigated a summer
CAPE case (23–24 July 2020) from the case catalog on the
UFS Case Studies Platform that documents forecast chal-
lenges of NOAA’s global operational weather forecast model.
The case is characterized by large CAPE over the Great
Plains, with surface-based CAPE and mixed-layer CAPE
reaching 5000 and 3000 J kg21, respectively. The large CAPE
over the Northern Great Plains was associated with a warm
frontal passage. No significant mesoscale convective sys-
tems were impacting the Southern Great Plains. In this
study, we focused on the SGP region due to the simple syn-
optic situation and the detailed observations within the
ARM network.

Results show that the low CAPE bias in GFS v16 at the
ARM SGP central facility site can be attributed to the simu-
lated drier air at low levels, when compared with the TROPoe
dataset. The moisture-budget analysis showed that the advec-
tion fields are of the same order of magnitude as ERA5 within
the PBL, hence advection is not the cause of the drier air sim-
ulated in GFS v16 in the lowest 90 hPa. The residual term,
which represents subgrid physical processes, is the main con-
tributor that impacts the low-level moisture tendencies. The
sharp diurnal evolution of PBL height in GFS v16 is accompa-
nied by overmixing within the boundary layer at noon, lead-
ing to reduced water-vapor loadings at low levels. Excessive
sensible heat flux contributes to the overshooting of the PBL
height (PBLH) in GFS v16. The overestimated surface heat
fluxes are also due to an incorrect surface energy partitioning
associated with the slightly warmer and drier soil surface in
the model. The early decrease of PBLH from GFS v16 in the
afternoon is associated with boundary layer cloud formation,

FIG. 10. MLCAPE (J kg21) derived from TROPoe and SCM runs including ObsIC (orange),
ObsIC_LSM (blue), and UFSIC (red).
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which leads to premature drop of surface net radiation and
subsequently surface turbulent fluxes and moisture near the
surface.

The single column model (SCM) is a useful tool for model
error attribution within the Hierarchical Testing Framework.
However, SCM results are sensitive to the advection tenden-
cies that are used to drive the SCM. Thus, analysis is focused
on the intercomparison among the SCM sensitivity runs.
Three SCM experiments (ObsIC, ObsIC_LSM, and UFSIC)
were conducted to investigate the impact of initial conditions
and land-atmosphere interactions on the simulated CAPE.
With realistic initial vertical meteorological profiles to drive the
SCM runs, ObsIC run can produce a larger CAPE than the
UFSIC run. This highlights the importance of optimizing the at-
mospheric and land initial conditions through a more accurate
background state (first-guess forecast) and improved data as-
similation in future GFS model development. The SCM experi-
ment with an active LSM model simulates lower CAPE than
SCM runs with prescribed surface fluxes. One hypothesis is that
overmixing in the GFS v16 leads to excessive drying of the at-
mosphere near the surface, which in turn cause excessive evapo-
ration and thus drying the soil. This justifies further
investigation and additional development on the PBL scheme
used in GFS.

It is important to note that there is continuous ongoing de-
velopment of the GFS toward GFS v17. For example, efforts
such as improving the surface coupling (Barlage 2022) have
been made after GFS v16 became operational. However, our
investigation is specific to the operational implementation of
GFS v16. Interested readers are referred to the authoritative
UFS Weather Model GitHub repository to retrieve the most
updated developmental codes. A limitation of this study is that
it only examines the CAPE evolution in a single case in the sum-
mer over the SGP site, and thus the findings are only applicable
to this case study. Additional warm-season cases would help to
strengthen the generalizability of our conclusions.
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